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Abstract 

Two new families of minimal balance surfaces are 
described. Their surface patches are not finite but 
have the shape of infinite strips. Such a strip is 
bounded by two congruent zigzag lines in one case 
or by a zigzag line and a meander line in the other 
case. In addition, certain minimal balance surfaces 
derived before with the aid of finite surface patches 
can also be generated from infinite strip-like surface 
patches. 

multiple catenoids (Koch & Fischer, 1989). Each such 
surface patch is spanned by two flat polygons as 
generating circuits. These polygons may be either 
convex or concave with one point of self-contact. 

In addition, a fourth kind of surface patch is 
compatible with parallel flat nets of twofold axes, 
namely strips of infinite length. Instead of two poly- 
gons such a strip is bounded by two infinite zigzag 
or meander lines which play a role analogous to 
that of the generating circuits of finite surface patches. 

1. Introduction 

A minimal balance surface subdivides R 3 into two 
disjunct congruent and multiply connected labyrinths 
(Fischer & Koch, 1987). With one exception, the Y* 
or gyroid surface (cf Schoen, 1970; Fischer & Koch, 
1987), all minimal balance surfaces known to the 
authors contain a so-called linear skeletal net, i.e. a 
set of twofold axes totally embedded within the 
surface. 

On the other hand, an appropriate set of twofold 
axes, i.e. a set of twofold axes defined by a group- 
subgroup pair of space groups with index 2, may be 
used as generating linear net for one or several 
minimal balance surfaces. All conceivable sets of such 
twofold axes have been tabulated before (Koch & 
Fischer, 1988). 

If all twofold axes within such a set are three- 
dimensionally connected, in general skew circuits 
may be found that may be spanned disc-like by a 
patch of a minimal surface. The families of such 
minimal balance surfaces have been derived com- 
pletely (Fischer & Koch, 1987; Koch & Fischer, 1988). 

So far, three kinds of surface patches have been 
described for sets of twofold axes disintegrating into 
parallel fiat nets: catenoids (Koch & Fischer, 1988), 
branched catenoids (Fischer & Koch, 1989), and 
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2. Strip-like surface patches 

Strip-like surface patches are compatible exclusively 
with those sets of twofold axes which consist of 
parallel square or rectangular nets [cases 24, 26, 27, 
29, 30 and 32 in Table 1 of Koch & Fischer (1988)]. 
As one direction parallel to the nets is necessarily 
distinguished as the infinite direction of the strips, 
only twofold rotation axes perpendicular to the nets 
are compatible with strip-like surface patches. Three-, 
four- and sixfold rotation axes would necessarily give 
rise to intersection of the strips and, therefore, to 
self-intersection of the generated minimal surface. 

Each strip is bounded by a first zigzag or meander 
line formed within one quadrangular net and a second 
such line from a neighbouring net. With respect to 
the underlying quadrangular nets zigzag lines run in 
diagonal directions whereas meander lines extend 
parallel to the twofold axes forming the nets. The two 
boundary lines of a strip-like surface patch must run 
parallel and their middle lines must be located directly 
above each other. 

In this way strips of seven different kinds may be 
constructed. For five kinds the shape of the strips is 
such that additional twofold axes occur which are 
embedded within the strips. As a consequence, the 
linear skeletal net of a minimal balance surface built 
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486 NEW SURFACE PATCHES FOR MINIMAL BALANCE SURFACES. III 

Table 1. Minimal balance surfaces of previously known families generated by strip-like surface patches 

Minimal Strips Number 
balance Group-subgroup of 
surface pair G - H  Direction Symmetry Gr-Hr surfaces 

CLP P42/mmc- Pmmm (100) P( m 2) rn- P( m 2) m 2 
P42/ nbc-P42c (100) P(12/ c)I-P(12)I  2 
P42/mbc- P42/m (100) P(mc) 2~ - P( m 1 ) I 2 
P42/n m c- P42 mc (100) P ( 11 ) 21 / ra- P( 11 ) m 2 
P4222- P222 (100) P(12) 1- P(12) 1 2 
P422 ~ 2- P42 (100) P( 11 )2 ~- P( 1 ! ) 1 2 
PT~m2- Pmrn2 (100) P(11) m-  P( 11)m 2 
P4b2-P~I (100) P ( l c ) I - P ( I  1)1 2 
P42/mcm-Cmmm (110) P(m2) m- P(m2)m 2 
P42/nnm- Cmma ( 11 O) P(c2) rn- P(c2) m 2 
P4222- C222 (110) P(12) I -P(12) I  2 
PT~2m-Cmm2 (110) P(11 )m-P(  1 l )m 2 

oCLP C c c m - P l l 2 / m  (110) P ( m l ) l - P ( m l ) !  2 
Ccca-Ccc2 (I 10) P ( 1 1 ) I - P ( I  1)1 2 
C222-P112 (110) P ( I I ) I - P ( I  1)1 2 
Pnnn-P12/  nl (101) P(cl  ) l -P(  cl )l 2 

_ _  - 

Pban-Pb2n (1015 P(11)l-P(11)1 2 
P c c m - P l l 2 / m  (1105 P ( m l ) l - P ( m l ) l  2 
P222-PI21 (1015 P ( l l ) I - P ( I I ) I  2 

tD I41 / amd-  141 md ( 1005 P( 11 )2 /m-  P( 11 ) m 1 
141/acd-14Ja  (100) P(cc)2-P(c l ) l  1 
I4~22-I4~ (100) P(1 I )2 -P ( I  1)1 1 
14J  amd-  lmma (100) P(c2) m- P(c2) m 1 
14~/acd-ITl2d (1005 P(12/c) I -P(12)I  1 
I4~22-I212t2~ (100) P(12) l -P(12) I  1 
14m2- lmm2 (100) P(I  l ) m - P (  11)m 2 
I7~c2-I4 (100) P ( l c ) I - P ( l l ) I  2 

- _  - 

oDa Fddd-  Fdd2 (1105 P( 11 ) 1 - P( 11 ) 1 1 
Fddd-C12 /c l  (1015 P ( c l ) l - P ( c l  )1 1 
F222-C121 (101) P(I  1 ) I - P ( I  1)1 2 

oDb Ccca- Pnna [010] P(12/c) 1 - P( | 2) 1 2 
lbam- lb 2rn [001] P( l l )2t/ m-  P( l l )rn 2 
Cmma-  Pmma [ 100] P(m2) m- P(m2) m 2 
C222-P2~22 [010] P(12)l-P(12)1 2 
Pban-Pb2n [001] P ( ~ i ) i - P ( I 1 ) I  2 
Pccm-Pc2m [001] P( 11)m- P(I  1)m 2 
l bam- l  l l2/ m [010], [100] P ( m c ) 2 t - P ( m l  )l 4 
I222-I121 [ 100], [OOl] P ( l l ) 2 t - P ( l l ) l  4 
P b a n - P l l 2 / n  [100], [010] P ( l c ) l - P ( l l ) l  4 
Pccm-Pl  l2/ m [lO0], [010] P ( m l  ) l - P ( m l  )l 4 
P222-PI21 [100], [001] P(11)l-P(11)1 4 

up from such strips is more comprehensive than the 
generating linear net that has been used. Therefore, 
the resulting minimal surface may also be generated 
by disc-like surface patches, and it belongs to one of 
the known families. Only two kinds of strips, the most 
complicated ones, give rise to new families of minimal 
balance surfaces. 

3. Previously known minimal balance surfaces 
generated by strip-like surface patches 

Information on all minimal balance surfaces which 
may be generated from disk-like as well as from 
strip-like surface patches is gathered in Table 1. The 
respective families of minimal surfaces are symbol- 
ized in column 1 (cf Koch & Fischer, 1988). All 
group-subgroup pairs G-H compatible with a given 
kind of strip-like surface patches are tabulated in 
column 2. The direction of the strips- referred to a 
conventional basis of G -  is indicated in column 3. 
The strip symmetry is described (column 4) by a 

group-subgroup pair Gr-Hr of rod groups with Gr c 
G and H~ c H. The index of Hr in G~ may be either 
2 or 1. In the latter case no symmetry operations of 
G exist that interchange the two sides of a strip and, 
therefore, Gr and Hr coincide. The rod groups are 
symbolized according to Bohm & Dornberger-Schiff 
(1967). In addition, the following rules are observed: 
(1) The infinite direction of the strips is chosen to be 
the c direction in the rod-group symbol. (2) The b 
direction of the symbol is chosen perpendicular to c 
and parallel to the plane nets of twofold axes. Con- 
sequently, the a direction must run perpendicular to 
the plane nets. The number of equivalent surfaces 
that may be generated within a set of twofold axes is 
displayed in the last column. 

CLP and oCLP surfaces 

Case 24 of Table 1 of Koch & Fischer (1988) refers 
to square nets of twofold axes stacked directly upon 
each other. Such nets allow strip-like surface patches 
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bounded by two congruent zigzag lines (cf. Fig. 1). 
The corresponding minimal balance surfaces belong 
to the tetragonal family CLP. All strips of the same 
layer o fa  CLP surface, i.e. all strips spanned between 
the same two square nets, run parallel whereas strips 
of neighbouring layers are oriented perpendicular to 
each other. As there exist two possibilities to choose 
the strip direction in the first layer each set of square 
nets allows two congruent CLP surfaces. 

Case 24 refers to 46 types of group-subgroup pairs 
in total [cf. Koch & Fischer (1988), Table 1], 12 of 
which are compatible with strip-like surface patches 
as described above. As the inherent symmetry of a 
CLP surface is P42/mcm-P42/mmc there exists no 
natural summit under the pairs G - H  listed in Table 
1. The subgroup index of the pairs G - H  with respect 
to the inherent symmetry is 2 for the upper four pairs, 
4 for the next six pairs, and 8 for the last two pairs. 
For all 12 types the intersection group N E ( G ) n  
N~(H)  of the Euclidean normalizers of G and H 
maps the two congruent CLP surfaces onto another. 

The inherent symmetry of a corresponding strip, 
P(mc)m-P(m2)m,  also does not occur in Table 1. 
All listed pairs G,-Hr are subgroups of the inherent 
symmetry and all these pairs differ. The fictitious 
double occurrence of some of them, e.g. of P ( m 2 ) m -  
P(m2)m, results from a doubling of the translation 
period for the second pair which cannot be made 
evident by the symbols. 

The orthorhombic analogue of case 24 is case 26, 
i.e. rectangular nets stacked directly upon each other. 
Again zigzag strips may be formed. The correspond- 
ing minimal surfaces belong to the family oCLP.* 
Seven out of 33 types of space-group pairs referring 
to case 26 are compatible with oCLP surfaces. The 
first two pairs listed in Table 1 are subgroups of index 
2 of the inherent symmetry Pccm-Cccm of oCLP 
surfaces; the index is 4 for the next four pairs and 8 
for the last pair. The inherent symmetry of the strips 
is P ( 2 / m l ) l - P ( m l ) l .  

As for CLP surfaces, all strips of one layer run parallel 
whereas strips of neighbouring layers are perpen- 
dicular to each other. Therefore, each such set of 
twofold axes is compatible with two congruent tD 
surfaces. 

The inherent symmetry of a tD surface is P42/ 
nnm-I41/amd, that of a corresponding strip is 
P(cc)m-P(c2)m.  Case 29 refers to seven types of 
group-subgroup pairs, five of which are compatible 
with tD surfaces. Two of these five, namely IT~m2- 
Imm2 and I7~c2-I4, allow both congruent tD sur- 
faces. The other three are consistent with one tD 
surface only. In the case of 1 4 J a c d - I 4 2 d t h e  inver- 
sion centres must lie on the surface, a condition that 
can be fulfilled by only one of the two surfaces. In 
the case of 141/amd-Imma and I4122-I2~2~2~ the 
twofold axes .2. contained in G as well as in H must 
not coincide with the central axes of the strips but 
run perpendicular to the strips. 

The first three group-subgroup pairs listed in Table 
1 belong to case 39 instead of case 29. The correspond- 
ing sets of twofold axes contain, in addition to the 
square nets, sets of isolated twofold axes parallel to 
the plane nets. As a twofold axis in the infinite direc- 
tion of a strip belongs to its inherent symmetry the 
additional twofold axes of case 39 play a similar role 
to the inversion centres for I4Jacd- I42d .  There 
exists, of course, a second possibility of handling case 
39 and the tD surfaces: instead of strips bounded by 
two zigzag lines and having a twofold axis as middle 
line one may regard more slender strips with one 
zigzag line and one straight line as boundaries. 

Case 30, the orthorhombic analogue of case 29, 
refers to sets of rectangular nets with a corresponding 
stacking sequence. The respective strips generate the 
orthorhombic family of minimal surfaces oDa with 
inherent symmetry Pnnn-Fddd. Again each set of 
rectangular nets spans two congruent oDa surfaces, 
but merely space-group pairs of type F222- C 121 are 
compatible with both surfaces. For Fddd-Fdd2 the 

tD and oDa surfaces 

Congruent parallel square nets of twofold axes may 
be stacked in such a way that all vertices of a first 
net are located between the polygon centres of the 
two neighbouring nets. Such sets of twofold axes 
belong to case 29. Again strips may be spanned 
between two congruent parallel zigzag lines from two 
adjacent nets (cf. Fig. 2). The minimal balance sur- 
faces generated by such strips belong to family tD. 

* The symmetry considerations for oCLP surfaces have revealed 
the omission of one possibility for the generation of oCLP surfaces 
from disc-like surface patches in Table 1 of Koch & Fischer (1988): 
oCLP surfaces may be generated from skew 8-gons with chair 
form spanned by sets of twofold axes belonging to case 16. The 
corresponding space-group pairs are: Pban-Pnan(2c), Pccm- 
Pncm(2b), P222-P2221(2c). 

Fig. 1. Strip-like surface patch generating a CLP surface. 

Fig. 2. Strip-like surface patch generating a tD surlace. 
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inversion centres of Fddd have to lie on the surface, 
whereas for Fddd-C12/cl  the inversion centres are 
forbidden to lie on the surface. The inherent strip 
symmetry of oDa surfaces is P(2/c l ) l -P(c l ) l .  

oDb surfaces 

The sets of rectangular nets belonging to case 26 
a l l o w - i n  addition to the zigzag strips described 
above- s t r ips  bounded by two congruent meander 
lines and running parallel to the twofold axes of the 
nets (cf Fig. 3). The resulting minimal surfaces belong 
to the orthorhombic family oDb with inherent sym- 
metry Cmma-Imma. As all strips of an oDb surface 
are parallel to each other a specialization of the 
orthorhombic nets to square nets does not enhance 
the symmetry of the generated surface. The inherent 
strip symmetry is P(mc)m-P(m2)m. 

In principle, each set of rectangular nets enables 
two pairs of congruent oDb surfaces. The strips of 
congruent surfaces run parallel, those of noncon- 
gruent surfaces are perpendicular to each other. 

Eleven types of group-subgroup pairs are compat- 
ible with oDb surfaces. The first six of them allow 
only one strip direction (cf Table 1, column 3), i.e. 
only two congruent surfaces. This may be understood 
from the following symmetry arguments: Additional 
twofold axes ..2 parallel to the nets must not run 
parallel to the strips (Ccca-Pnna, C222-P2~22). 
Inversion centres on the surfaces are compatible with 
one strip direction only (Ibam-lb2m, Pban-Pb2n). 
Mirror planes perpendicular to the rectangular nets 
must necessarily be perpendicular to the strip direc- 
tion (Cmma-Pmma, Pccm-Pc2m). In all these cases 
the affine normalizer of H is orthorhombic and, there- 
fore, the a and b directions play different roles with 
respect to G-H. In contrast, the affine normalizers of 
G and H are at least tetragonal for the last five pairs 
and, as a consequence, four oDb surfaces may be 
generated. 

4. New minimal balance surfaces generated by 
strip-like surface patches 

Two families of minimal balance surfaces have been 
derived, that can be generated by strip-like surface 
patches but not by smaller ones bounded by twofold 
axes. Table 2 displays information on these surfaces. 
Column 1 gives a symbol, column 2 the genus. All 
types of group-subgroup pairs that allow the gener- 
ation of these surfaces from strip-like surface patches 

I 

I 

Fig. 3. Strip-like surface patch generating an oDb surface. 

are listed in column 3, the first one showing the 
inherent symmetry of the surfaces. The next three 
columns display information on the strips: the strip 
direction, the rod-group symmetry, and some co- 
ordinate triplets describing the two boundaries of a 
strip. The last column gives the number of surfaces 
of this type that may be generated within the same 
set of twofold axes. 

Minimal balance surfaces ST1 

Special rectangular nets of twofold axes with edge- 
length ratio 1:31/2 may be stacked in a hexagonal 
sequence with neighbouring nets rotated against each 
other by 60 ° [case 27 in Table 1 of Koch & Fischer 
(1988)]. Then each pair of adjacent nets coincides in 
the direction of one of their diagonals. The corresond- 
ing zigzag lines in this direction span strip-like surface 
patches which give rise to minimal balance surfaces 
of a new family, designated ST1 (Figs. 4 and 5). 

All strips of such a minimal surface bounded by 
the same two rectangular nets run parallel, but neigh- 
bouring strips differ in their orientation. Strips from 
adjacent layers run in directions rotated by 60 ° against 
each other. Each set of nets referring to case 27 is 
compatible with one ST1 surface only. 

The inherent symmetry P6222-P6422(2c) of ST1 
surfaces coincides with the inherent symmetry of HS3 
surfaces (cf Koch & Fischer, 1988). Therefore, each 
ST1 surface is complementary to one HS3 surface. 
The translation period perpendicular to the nets of 
twofold axes comprehends three layers with respect 
to P6222, but six layers with respect to P6422(2c). 

Minimal balance surfaces ST2 

Parallel square nets of different size and orientation 
form the sets of twofold axes belonging to case 32. 
Zigzag lines within the wider nets and meander lines 
within the nets with the smaller squares coincide in 
their directions. Therefore, strips may be spanned 
between a zigzag line and a meander line from adja- 
cent nets (Fig. 6). They generate minimal balance 
surfaces of a second new family, named ST2 (Fig. 7). 

All strips from the same layer of an ST2 surface 
run parallel, but the orientation of neighbouring strips 
is different, Strips of adjacent layers run parallel, too, 
if the corresponding common net is formed by the 
small squares. They run perpendicular to each other, 
if the layers have one of the wider nets in common. 

The inherent symmetry of an ST2 surface is 
P42/nbc- P42/n. A translation period perpendicular 
to the square nets, i.e. parallel to c, comprehends four 
layers of strips, with respect to P42/nbc as well as 
with regard to P42/n. In addition ST2 surfaces may 
be generated with symmetry P4222-P42. The other 
two types of space-group pairs belonging to case 32 
are incompatible with ST2 surfaces. 
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Table 2. New minimal balance surfaces generated by strip-like surface patches 

Minimal 
balance 
surface Genus 

ST1 7 

ST2 7 

Strips 
Group-subgroup 

pair Direction Symmetry Coordinates 
• I !_  t 1a! P6222-P6422(2c) (010) P ( 1 2 ) l - P ( 1 2 ) I  . . ,  00~-, ,26 ,  ,, ,6 . . . .  / 

P 6 4 2 2 -  P64 (010) P (  11 ) 1-  P (  11 ) 1 00_~,l I T 10~, • . . ,  ~ ,  . . .  

P42/nbc-P42/n (100) P(lc)I-P(I1)I . . . .  O~,ll 00~_, ~ ,  I l l ~ ,  l~all . . . .  / 

P4222-  P42 (100) P(  11 ) 1-  P (  11 ) 1 . . . .  0~0,100, 1 ~0 . . . .  

Number of 
equivalent 
surfaces 

1 

As may  be learned f rom Fig. 6 an arbi trari ly chosen 
first zigzag line may be combined  with two different 
meande r  lines out of  each of  the adjacent  nets. 

Therefore,  four  different ST2 surfaces may  be gen- 
erated within each set of  twofold axes belonging to 
case 32. These four  surfaces are congruent  and com- 
plementary.  They can be m a p p e d  onto each other  by 
the intersection group 

NE( P42/ nbc) r~ N~( P42/ n) 

= P 4 / m m m  2 ' 2 ' " 

Fig. 4. Strip-like surface patch generating a minimal surface ST1 
with symmetry P6222-P6422(2c). 

In addi t ion,  these four  surfaces are complementa ry  
to four  BC2 surfaces (cf. Fischer & Koch,  1989) with 
inherent  symmet ry  P42/nnm-P42nm. The genus is 7 
for ST2 surfaces as well as for BC2 surfaces.  

5. Common properties of ST surfaces 

As multiple catenoids  may  be regarded as resulting 
from fusion of  n ne ighbour ing catenoids,  strip-like 
surface patches  may  be imagined as resulting from 
fusion of  an entire row of  infinitely many  catenoids 
or b ranched  catenoids.  The fusion of  one row of  
catenoids produces  two strip-like surface patches.  

New minimal  ba lance  surfaces are genera ted  only 
by strips of  which the inherent  symmetry  does not 
contain symmet ry  opera t ions  that  in terchange the two 

",,,/\,/ 
/ ./ 

x 

/ /  / - 
\ / /  "~,t 

Fig. 6. Strip-like surface patch generating a minimal surface ST2 
with symmetry P42/nbc-P42/n. 

Fig. 5. Model of a minimal surface ST1 with symmetry P6222- Fig. 7. Model of a minimal surface ST2 with symmetry P42/nbc- 
P6422 (2 c ). P42/n. 
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sides of a strip. As a consequence, the new surfaces 
form two different kinds of channels parallel to the 
strips, whereas the CLP, oCLP, tD, oDa and oDb 
surfaces form only one kind each. 

In contrast to minimal balance surfaces generated 
from catenoids, branched catenoids and multiple 
catenoids, minimal surfaces that may be generated 
from strip-like surface patches seem not to be re- 
stricted with respect to the axial ratio c/a. Apparently 
the distance between the rectangular nets may grow 
arbitrarily large. This property is not surprising with 
respect to those minimal surfaces that may be gener- 
ated also from disc-like surface patches. With respect 

to ST1 and ST2 surfaces the following idea may be 
helpful: a strip-like surface patch approximates in its 
central part more and more to a plane if the distance 
between its two boundaries becomes wider and wider. 
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Abstract 

A new phase refinement function that makes explicit 
use of the well resolved nature of the atomic peaks 
is presented. This function is first deduced for the 
one-dimensional case and then extended to the three- 
dimensional one. A new modified tangent formula 
can be derived from it. The effectiveness of this 
modified tangent formula is illustrated on the basis 
of some test structures. This function also seems to 
provide the X M Y  function of Debaerdemaeker & 
Woolfson [Acta Cryst. (1983), A39, 193-196] with a 
possible rational explanation. 

I. Introduction 

As a logical consequence of the availability of faster 
computers, a number of new multisolution direct 
methods have been developed in the last years for 
refining initially random sets of phases, e.g. the 
Y Z A R C  method of Baggio, Woolfson, Declercq & 
Germain (1978), the R A N T A N  approach of Yao 
Jia-xing (1981), the X M Y  function of Debaer- 
demaeker & Woolfson (1983) and more recently the 
Sayre (1952) equation tangent formula discussed by 
Debaerdemaeker, Tate & Woolfson (1985, 1988). Fol- 
lowing this trend, a new method has been investi- 
gated. It is based on the maximization of a function 
that explicitly incorporates, besides the positivity, 
another general and important property of the elec- 

0108-7673/89/070490-05503.00 

tron density, i.e. the atomicity. It will be shown that 
the introduction of this additional constraint makes 
this function especially well suited for refining 
initially random sets of phases via a modified tangent 
formula. 

2. The one-dimensional case 

2.1. Derivation of the new phase refinement function 

As is well known (Cochran, 1952), the integral 

a 2 ~ p a ( r ) d r  (1) 
ot  

must be a strong maximum, since p(r) ,  i.e. the electron 
density distribution of a one-dimensional model 
structure of cell period a, is positive and principally 
located at the atomic positions. On the other hand, 
if t represents a shift approximately equal to the 
average width of the atomic peaks, and since the 
atoms must be well resolved, then the integral 

a 2 ~ p(r+ t)p2(r) dr (2) 
o t  

will be small. Consequently, the difference between 
the two integrals, i.e. ( 1 ) - ( 2 ) ,  should be a large 
positive value for the true structure. However, (2) 
becomes a large positive value for wrong p(r) distri- 
butions containing poorly resolved peaks, i.e. peaks 
with widths greater than t. In these cases, the 
difference ( 1 ) -  (2) will be smaller. 
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